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Abstract

Shock waves-are indirectly observed as the source of type II radio

bursts, whereas magnetic bottles are identified as the source of moving

metric type IV radio bursts. The difference between the expansion speeds

of these waves and bottles is examined during their generation and

propagation near the flare regions. It is shown that, although generated

in the explosive phase of flares, the behavior of the bottles is quite

different from that of the waves and that the speed of the former is

generally much lower than that of the latter.

It has been suggested that these waves are related to flare-associated

interplanetary disturbances which produce SSC geomagnetic storms. These

disturbances may, therefore, be identified as interplanetary shock

waves. It is shown that the transit times of disturbances between the

sun and the earth give information about the deceleration of shock

waves to their local speeds observed near the earth's orbit. A brief

discussion is given on the relationship among magnetic bottles,

shock waves near the sun, and flare-associated disturbances in

interplanetary space.
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Introduction

Many beautiful observations by the Culgoora radio heliograph

have shown the moving patterns of the sources of both type II and type IV

radio bursts at 80 MHz frequency (e.g., Wild, 1970; Smerd and Dulk, 1971;

Wild and Smerd, 1972); they are useful to investigate the movement of

these sources in the outer solar corona and its relation to interplanetary

shock waves as observed at the earth's orbit or its vicinity. Since

the emission mechanism is well known to be completely different for these

two radio bursts (e.g., Kundu, 1965, Zheleznyakov, 1970), the difference

between the moving patterns of these sources seems very important for

investigating the generation and propagation of shock waves and magnetic

bottles, both of which are generally generated in the same flares.

Recently, Schatten(1970) has concluded that the expansion speed

of magnetic bottles is 200-300 km sec - 1 in the solar envelope and that,

in general, these bottles do not expand beyond this envelope. By

analyzing the relationship between the observed speeds of a magnetic bottle

and shock waves near the sun and at the earth's orbit from the 4 November

1968 flare, the shock wave responsible for the type II burst was found, which

orooaaated with the speed of 2000-3000 km sec - 1 . This speed was much faster
-i

than that of the magnetic bottle, which expanded at ; 200 km sec-1

The mean speed of the interplanetary shock wave between the sun and the

earth was 650 km sec- . Furthermore, Smerd and his colleagues. have

found that the expanding patterns of type IV radio sources are usually

different from those for moving metric type IV'bursts(e.g., Smerd and Dulk

1971; Dulk et al., 1971). Their results also show that the expansion of

type II sources is usually followed by type IV sources.



-3-

These results are very important for understanding the generation

and propagation of these two sources and their relation to such

phenomena as flare-associated interplanetary disturbances and SSC

geomagnetic storms. In this paper, we shall investigate the relationships

among these two radio sources and flare-associated interplanetary

disturbances. In order to find such relationships, we shall first analyze

the expansion speeds of both type II and type IV sources and then compare

them with the observed data on interplanetary shock waves. Based on this

study, we then discuss the generation and propagation of these sources

in the solar envelope.

2. Type II and Type IV Sources Generated by Solar Flares

We have selected several events for which the flare start time, the

flare position and importance, the time of the occurrence of SSC on earth,

the average speed over 1AU, VI, and the shock speed at 1AU, VL aY6 all

known and given in Table j.. The information concerning the type II and

type IV radio bursts, the proton flares, and the estimated speeds for

the sources of these radio bursts denoted by VI and VB respectively,

is given in Table II. It is clear from this table that, in general, the

speed of type IV sources is slower than that of type II sources: that is, shock

waves generating type II bursts usually propagate faster than type IV

sources in the solar atmosphere.

It is thought at present that these shock waves or shock induced

disturbances propagate through the space between the sun and the earth and

then, generate geomagnetic disturbance when they arrive at the earth

or its vicinity (e.g., Obayashi, 1967). Therefore, the time difference
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between the flare start and the occurrance of SSC determines the

propagation time of the disturbances from the sun to earth. Satellite

records on the sudden change of the interplanetary magnetic field also

gives important information about shock propagation times and their

local speed near the earth. The mean speed VI of these waves or associated

disturbances which are estimated from these times, are also summarized

in Table T.

At present, the metric component of moving type IV radio bursts is

explained as emission by gyro-synchrotron mechanism from mildly relativistic

electrons due to their interaction with sunspot magnetic fields near the

flare site. The movement of the type IV radio sources, therefore, suggests

that the magnetic fields tend to move outward with the electrons; suggesting

that electrons are being trapped by these magnetic fields while both

of them are moving outward. The results summarized in Table I thus

shows that the speed of motion of these field lines is less than that of

shock waves responsible for type II bursts. As discussed by Smerd and

Dulk (19712 and Sakurai (1973a), the source of moving metric type IV

bursts is iddtified-as the magnetic bottle consisting of sunspot

magnetic field lines being stretched outward from the flare regions.

Therefore, the difference between V and VB strongly suggest that these

bottles move independently of shock waves in the solar atmosphere after

ejection from the flare regions.

Using these observed results, we shall consider the generation of both

shock waves and magnetic bottles in solar flares and their propagation

into outer space.
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3. Generation and Propagation of Shock Waves and Magnetic Bottles in

the Solar Atmosphere

As shown in Table II, the expansion speed of magnetic bottles i

usually less than that of shock waves. Therefore, it seems likely

that, in the solar atmosphere, the behavior of shock waves is quite

different from that of magnetic bottles, as an example, consider the case of

the flare of 4 November 1968. This flare was a major one which occurred

at the west limb at _0513 UT, producing various phenomena such as radio

bursts of spectral type II, III, and IV, solar cosmic rays of Mev energy,

interplanetary shock wave and SSC geomagnetic storm (see Lincoln, 1970,

Sakurai, 1973b). Schatten (1970) estimated the average expansion speed

of an associated magnetic bottle to be 200 km sec - I in the solar envelope.

In contrast to this speed, the propagation speed of a shock wave responsible

for type II burst is estimated to be between 2000 and 3000 km sec - i

(Sakurai et. al., 1973). Furthermore the mean propagation speed of the

flare-associated interplanetary disturbances between the sun and the-1

earth, was *. 650 km sec , much slower than the speed of the

shock wave as the source of type II burst which suggests that the shock

wave was slowed while propagating through interplanetary space. These

three speeds are illustrated in Fig. 1, to show schematically the

behavior of the shock waves and the magnetic bottle after the onset of

the parent flare.

All other events described in Table I show similar behavior of shock

waves and magnetic bottles to that shown in Fig. 1. The speed of

expanding shock waves responsible for type II bursts is usually higher

than that of magnetic bottles identified as the source of mov ng metric

type IV bursts. At present, it is believed that both shock waves and

magnetic bottles are generated during the explosive ohase of solar flares
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(e.g., Smith and Harvey, 1971; Sakurai, 1973c). These bottles consist

of heated plasma and high-energy protons and electrons. The electrons

are identified as the source of moving type IV bursts, and are believed

to be accelerated to mildly relativistic energies during the explosive

phase. Sometimes these bottles are slowed down and cease to move radially

beyond 10-15 solar radii, (Schatten, 1970; Sakurai, 1973d). Even if a

bottle is ejected beyond the boundary of the solar envelope, it is expected

that its arrival at the earth's orbit would be delayed by at least some

tens of hours compared to the time of the shock arrival. If such a bottle

is thought of as the source of the main phase of a geomagnetic storm, the

time interval between the SSC and the main phase must be some tens of hours.

We have never observed such a long time delay(see Akasofu and Chapman,

1971). We may suggest that the main phase is caused by the compressed

turbulent plasma behind the interplanetary shock waves. The magnetic

bottle may or may not expand into interplanetary space depending on the

trapped energetic clouds are able or unable, respectively, to overcome

the magnetic pressure. When the bottle is able to expand into

interplanetary space, the plasma in front of the bottle may be the sources

of the observed helium enriched plasma (e.g., Hirshberg et. al., 1972).

We see that both shock waves and magnetic bottles seem to be

generated in the explosive phase of flares. However, there seem to be

two possibilities for their generation; 1) shock waves are blast waves,

being independent of the generation of magnetic bottles, 2) shock waves

are generated by magnetic bottles if the latter move with a speed higher

than the local Alfven waves immediately after their production in the

explosive phase. In this case, these bottles must be assumed to be
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decelerated very quickly, say within a few minutes, after they generate

shock waves. This may correspond to the case that the duration which

shock waves are driven is very short, as discussed by Hundhausen and

Gentry (1969).

In the first case, magnetic bottles must be produced independently

of the generation of shock waves. In order to explain the slow speed

expansion of these bottles, we suggest that their formation is related

to the acceleration of high-energy protons and electrons because, in

general, the emission of moving type IV bursts is observed in

association with proton flares; these protons are released in outer

space as solar cosmic rays (Sakurai, 1969). In this case, it seems

likely that the expansion of such bottles ceases finally because of the

energy loss of high-energy electrons and of bottle's adiabatic expansion.

4. Internlanetary Shock Waves as Observed at the Earth's Orbit

It seems that shock waves responsible for type II bursts are related

to the interplanetary shock waves observed at the earth's orbit and its

vicinity. By using the time difference between solar flares and the

magnetic field variations observed on earth and by satellites, the mean

speed of the interplanetary disturbances propagating between the sun and

the earth can be estimated. Furthermore, we may estimate the local speed

of shock waves near the earth by using the time differences between

the observations at the earth and at satellites or by using the measured

plasma and magnetic field data. These speeds thus estimated are shown

in Tables I and II. Although the number of the observations is not

large, we can conclude that the mean speed (VI) is usually higher than

the local speed for every case except for the 4 Feb, 1967 event.
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Furthermore, the result in Tables I and II shoS that the mean speed of

interplanetary disturbances is always smaller than the speed of the

source of type II burst. If we postulate that the shock wave generated

near the sun can propagate continuously through interplanetary space,

we can describe the variation of its speed through this space.

The observations described above suggest that shock waves are

strongly decelerated while propagating through interplanetary space.

Hundhausen and Gentry (1969) have shown that such deceleration really

occurs for a blast-wave type of shock wave propagating through the space

between the sun and the earth.

On the other hand, if the shock wave observed near the sun is unable

to propagate for a distance comparable to 1 A.U., the interplanetary

shock wave as observed at the earth has to be generated in interplanetary

space. Then the flare-ejecta may be the agent which can produce those

shock waves observed near the earth. A detailed description of such a

model will be given in the near future.

5. Summary

In this paper, we have considered the relationships among the speeds

of type II and type IV radio sources and flare-associated interplanetary

disturbances, all of which are generated by the same solar flares. These

interplanetary disturbances are usually observed as shock waves. We

suggest that the source of type II bursts tends to propagate independently

of that of type IV bursts in the solar atmosphere; their speeds are

much different from each other. This suggests that, even though these

two sources are produced simultaneously in the explosive phase of a flare,

their behavior is quite different in the solar atmosphere after they form
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at the flare site. We have considered two possible models for the generation

of these sources during the explosive phase, but it seems premature to

conclude which one is more favorable to explain the observations.

The shock waves responsible for type 11 radio bursts seem to be

related to interplanetary shock waves as observed at the earth's orbit.

The observed difference between the speeds of these two shock waves suggests

that, while propagating through interplanetary space, these waves are

decelerated sharply from one or two thousand km sec - i to several

hundred km sec-1 if they propagate continuously through space. The

observation of the local speed of interplanetary shock waves shows that

this deceleration occurs somewhere between the sun and the earth.

It should be noted that the magnetic bottles discussed in this paper

cannot be the sources of the main phases of geomagnetic storms because

they are not identified as the post-shock plasma. In fact, the slow speed

expansion of these bottles cannot explain the progress of geomagnetic

storm because of the estimated time delay of some tens of hours of

their arrival after the onset of SSC at the earth.
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TABLE I

The average and local speeds of interplanetary disturbances

SOLAR EVENTS UT FLARE POSITION IMP SSC VI  VL

UT (km sec-1)

20 Sept. 1963 2350 N1OW09 2B 22 Sept. 1550 1040 no data

7 July 1966 0023 N34W48 2B 8 July 2100 920 750

28 Aug. 1522 N23E04 3B 30 Aug. 1112 940 no shock

4 Feb. 1967 1640 NllE40 2B 7 Feb. 1640 580 700

23 May 1835 N28E24 3B 25 May 1240 960 540

4 Sept. 1968 0100 N13W14 IN 6 Sept. 1400 670 640

23 Oct. 2355 S12E59 3B 26 Oct. 1833 630 no data

26 Oct. 0130 S20E32 1N 29 Oct. 0908 520 420

4 Nov. 0513 S15W90 2B 6 Nov. 2000 660 no data

22 Nov. 0056 S16E39 IN 24 Nov. 1600 660 no data

1 Mar. 1969 2213 N8w89 lN 4 Mar. 1836 610 no shock
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TABLE II

'The source speeds of type II and type IV bursts

II IV Protons VII VB Ref.
(radio bursts) (Mev) (km sec- ! )

1963 Sept. 20 yes yes yes -1500 a)

1966 July 7 yes yes yes (>940) 380 b), c)

Aug. 28 yes yes yes -1000 <700 k)

1967 Feb. 4 yes yes no >750 a)

May 23 yes yes yes 1060 -500 a), 1)

1968 Sept. 4 yes yes no 1350 780 d)

Oct. 23 yes yes yes 3100 1400 d), e)

Oct. 26 yes yes no >520 480 d), f)

Nov. 4 yes yes yes -2500 200 g), k)

Nov. 22 yes yes no 2000 300 i)

1969 Mar. 1 yes yes yes 1080 270 d), j)
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*PIONEER 6
4 NOV. 1968 2.292 GHz

WEST
FLARE 2B' A

SUN B VR2600 KM SEC
EAST VB

200 KM SEC-1  TYPE II RADIO BURSTS

A: SHOCK WAVE EXCITING
TYPE 11 BURSTS

B: MAGNETIC BOTTLE (SOURCE
OF TYPE I BURSTS)

V : SPEED OF TYPE U ASSOCIATED SHOCK

VB : SPEED OF MAGNETIC BOTTLE
V1 : SHOCK SPEED IN INTERPLANETARY SPACE

INTERPLANETARY SHOCK WAVE (6 NOV. 1968)

V1 650 KM SEC - 1

EARTH

Fig. 1 Propagation of shock wave and magnetic bottle from the

flare region in the case of 4 November 1968 proton

flare. Two days later, interplanetary shock wave was

observed on 6 November at the earth's orbit. These

flare-associated disturbances are described in this pictures.


